Exercise 9

Use the Laplace transform method to solve the Volterra integral equations of the first kind:

$$
1+x-\frac{1}{3!} x^{3}-e^{x}=\int_{0}^{x}(t-x) u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Multiply both sides of the integral equation by -1 .

$$
\frac{1}{3!} x^{3}+e^{x}-1-x=\int_{0}^{x}(x-t) u(t) d t
$$

Take the Laplace transform of both sides of the integral equation.

$$
\mathcal{L}\left\{\frac{1}{6} x^{3}+e^{x}-1-x\right\}=\mathcal{L}\left\{\int_{0}^{x}(x-t) u(t) d t\right\}
$$

Use the fact that the Laplace transform is linear on the left side and apply the convolution theorem on the right side.

$$
\begin{gathered}
\frac{1}{6} \mathcal{L}\left\{x^{3}\right\}+\mathcal{L}\left\{e^{x}\right\}-\mathcal{L}\{1\}-\mathcal{L}\{x\}=\mathcal{L}\{x\} U(s) \\
\frac{1}{6}\left(\frac{6}{s^{4}}\right)+\frac{1}{s-1}-\frac{1}{s}-\frac{1}{s^{2}}=\frac{1}{s^{2}} U(s)
\end{gathered}
$$

Solve for $U(s)$.

$$
\begin{aligned}
U(s) & =\frac{1}{s^{2}}+\frac{s^{2}}{s-1}-s-1 \\
& =\frac{1}{s^{2}}+\frac{s^{2}-(s+1)(s-1)}{s-1} \\
& =\frac{1}{s^{2}}+\frac{1}{s-1}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& =x+e^{x}
\end{aligned}
$$

